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Abstract. Monte Carlo data for the pair correlation function is obtained on five different 
lattices for the directed percolation problem in two dimensions. Scaling is tested and found 
to hold beyond 20 lattice spacings for all models. Evidence is found to support the 
universality of the scaling function. The values of the exponents y /  U,, and v L /  Y I I  are 
extracted from the data; our results for all models are summarised by 

y /  v i  = 1.305 * 0.007 

and 

U,/ vll = 0.629 i 0.010. 

Comparison is made with estimates derived by other means 

1. Introduction 

In ordinary percolation sites or bonds are filled at random with probability p .  Percola- 
tion then proceeds along paths between occupied nearest-neighbour links and the 
orientation of a link is not restricted in either direction along any axis. A variant of 
this model is directed percolation in which sites or bonds are also filled at random 
with probability p ,  but nearest-neighbour links must be oriented such that percolation 
is allowed to proceed in only one direction along the axis which is designated as the 
preferred direction. It is sensible then to associate this axis with time and therefore 
percolation proceeds in the direction of increasing time. In this sense time reversal 
symmetry is broken in directed percolation. 

The effect of this preferred direction can be observed if one looks at the shape of 
typical clusters in each model. The clusters formed by collections of nearest-neighbour 
links in ordinary percolation are isotropic. At p = p c  a fractal structure is formed. In 
directed percolation the clusters for p < p c  take on a characteristic shape in which the 
size of the clusters in the preferred direction is characterised by a different length scale 
from that in the perpendicular directions. Cluster growth in the preferred direction is 
restricted to that of increasing time but in the perpendicular directions growth may be 
isotropic. 

The pair connectedness or pair correlation function G(r2, r , )  is a measure of the 
probability that sites r2 and r ,  are connected by some path irrespective of the other 
sites in the lattice. Lines of constant G give the average shape of a cluster. In directed 
percolation r, = (xi, ti) and we have the added restriction that f 2  > t ,  for G to be non-zero. 
This corresponds to a Markov process, since the probabilities G({x i } ,  t )  that a given 
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set of sites {x,} are connected to the origin are related in a direct way to the probabilities 
G({x,}, t -  1). Such models arise in chemistry and biology (Schlogl 1972) and popula- 
tion dynamics (Griffeath 1979, Murray 1979). 

Cardy and Sugar (1980) have shown that directed percolation is in the same 
universality class as Reggeon Field Theory (RFT) near five dimensions. The scaling 
law for G that one obtains from RFT (Abarbanel et al 1976) but written in statistical 
mechanics notation is 

G(x, f ) - I p - p c 1 2 p ( F I ( I P - P c 1 2 y ~ ~ 2 ,  I P - P c l ” I t )  (1 .1 )  

where p, vIl and v,are critical exponents which depend only on the number of transverse 
dimensions D (where D = d - 1) and I,!J is a universal scaling function calculable within 
the E expansion. Noting that the correlation lengths .$I. and tIl for the directions 
perpendicular and parallel to the preferred direction, respectively, are given asymptoti- 
cally by 

5L - I P - Pcl- u L 9  511 - IP -PcI -”~~ ,  (1.2) 

we find that G can be written in terms of another scaling function (0) for p exactly 
at the critical probability pc:  

G(x, f )  - A t - 2 P ’ Y I ~ ( B x / t Y - ’ Y ~ ) .  (1.3) 

Here, as in (1.  l ) ,  x = x2 - x l r  t = t, - t ,  and A and B are non-universal constants. 

Sugar 1980) 
A hyperscaling relation between exponents written in RFT notation is (Cardy and 

p = $ v ( f D z  - 7) ) .  (1.4) 

The set of exponents p, 77, z and v are also used in the Reggeon quantum spin (RQS) 
model (Amati er al 1976, Brower et a1 1978) which is believed to be in the same 
universality class as RFT. In statistical mechanics p corresponds to the percolation 
probability exponent, y corresponds to the mean size exponent and the hyperscaling 
relation (1.4) becomes (Essam and De’Bell 1983) 

p = $( Dv, + VI1 - y ) .  (1.5) 
The exponents 7, z and v in RFT and RQS and the exponents y, vll and v, in statistical 
mechanics are related by 

7) = r l  VI1 - 1 z = 2v,/ v = V/I.  (1.6) 
The exponents 7, z and v have been calculated in RFT near d = 5 and the results 
taken over to this model, but to lowest order in E they are not expected to be 
accurate near d = 2. 

In d = 2 Brower et a1 (1978) calculated the exponents 7, z and v in the RQS model 
using a high-temperature expansion. Grassberger and De La Torre (1979) used Monte 
Carlo methods in a lattice version of RFT and thereby calculated 7, z and v. By direct 
enumeration Blease has calculated p and y (1977a) and y and vl, (1977b) for directed 
percolation, but could not infer v, in either work since the hyperscaling relation (1.5) 
was not obtained until after these works were completed. Kertesz and Vicsek (1980) 
used Monte Carlo means to obtain vo, but assumed only one correlation length for 
the system and therefore did not calculate v, nor vll. Dhar and Barma (1981) also 
used Monte Carlo methods and obtained p and y. Kinzel and Yeomans (1981) used 
a transfer matrix approach to obtain vll and v,. Essam and De’Bell (1983) estimated 
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y and then obtained vll and v, by direct enumeration. Table 1 gives a summary of 
the exponents calculated in this work and by other authors and also gives an estimate 
of their respective errors. 

In this work we use Monte Carlo methods to create ensembles of clusters on the 
directed lattice and thereby infer the pair connectedness function G at p = p c .  Plots 
are then made of the normalised scaling function to observe the onset of scaling. 
Scaling is tested by plotting the scaling function (@) against the scaling variable ( z )  
for different values of time (the preferred direction on the lattice). This scaling function 
has not been shown in other works to be universal; by comparing plots of the scaling 
function for different models (suitably normalised) in two dimensions ( D  = l ) ,  we 
check the universality of the scaling function. Another more quantative test of univer- 
sality which we use in this work is a comparison of certain ratios of the moments of 
the scaling function computed for each model. These results, accurate to within 5 % ,  
also suggest that universality is obeyed. Finally, by plotting the log of the moments 
of the pair connectedness function against the log of the time, we obtain estimates of 
the critical exponents which we compare to those calculated by other means. 

2. Monte Carlo data 

It is a relatively simple task to generate Monte Carlo data for the pair connectedness 
function G(x, t ) ,  if one views this function at each step in time as a measure of the 
existence of a generation in a population. That is, the function G(x, t )  is a measure 
of the probability that an individual at the origin has a descendent at position x in 
generation t .  The process of generating the evolution of a population (from which 
G(x, t )  is derived) is simplified by the Markovian nature of the problem. That is, the 
existence of a member of any given generation is dependent upon the existence of its 
immediate predecessors in the previous generation. The random nature of the problem 
is characterised by the parameter p .  Note that for p < pc  the population is ultimately 
doomed to extinction even though it may experience several generations of sustained 
size and even growth before its eventual demise. The value of p at which the destiny 
of the population goes from certain demise to a finite probability for infinite growth 
defines p c .  

To fix ideas, consider site percolation on the square lattice at p = pc .  To determine 
whether an individual in a particular generation exists, that is, if the site (x, t )  is 
occupied, we must first ask whether its immediate predecessors exist, that is, whether 
either of the two sites (x + 1, t - 1)  or (x - 1, t - 1 )  are occupied. If one or both ancestors 
exist, then the probability that individual (x, t )  exists is pc .  This occurs irrespective of 
all other individuals in generation t .  If neither ancestor exists, then the individual 
(x, t )  cannot exist. That is, individual (x, t )  cannot spontaneously exist but must have 
at least one ancestor. This is an expression of the percolative nature of the problem. 
Since this process occurs for every generation succeeding from the origin, the only 
individuals (sites) considered in evaluating G(x, t )  are those whose ancestry can be 
traced back to the origin. In this sense, G(x, t )  is the probability that an individual 
exists at x in generation t by some geneaology, irrespective of other members of that 
generation. 

In the bond percolation problem as expressed in terms of population dynamics, 
we consider all individuals in all generations to exist, that is, all sites are present with 
probability one. The correlation function G(x, t )  in this case is again the probability 
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that an individual at (x, t )  is descended from the individual at the origin, but now it 
is the specific relations (bonds) between generations which are important. As in the 
site problem, to determine if an individual is part of this family tree, we must first ask 
if its immediate ancestors are part of the family tree. If neither ancestor is descended 
from the origin, then the individual at (x, t )  cannot be descended from the origin. If 
one or both ancestors are descended from the origin, then there is some probability 
that (x, t )  is too. Clearly an individual at (x, t )  has a greater chance of being a 
descendent of the individual at the origin if both its ancestors are descended from the 
origin, since in that case there are two possible ways in which the individual can be 
related to the origin. An example of each of these types of sites is shown in figure 1. 

Figure 1. A typical population evolved through three generations. Sites 1 1  and I5 have 
probability zero of being related to the origin, sites 12 and 14 have probability p ,  of being 
related to the origin and site 13 has probability 2p,-pf of being related to the origin. Site 
13 has a greater probability of being connected to the origin, since both of its ancestors 
(sites 8 and 9) are connected to the origin. 

The Markovian nature of directed percolation makes calculation of G(x, t )  simpler 
than in the case of ordinary percolation, since in tracing these ancestral paths one is 
allowed to move only backward in the preferred or time direction. This greatly restricts 
the number of possible paths which connect a site at (x, t )  to the origin. 

Following this Markovian idea, that an individuals existence at any site (x, t )  is 
solely dependent upon the existence of its predecessors in generation t - 1, we construc- 
ted an algorithm to generate Monte Carlo data of G(x, t ) .  Number the sites in the 
lattice in order of increasing position (x) and increasing time ( t ) .  Mark these sites 
with an index ( i ) .  Create the arrays GI ,  GTOT and GSQ which are labelled by the site 
numbers (i). These arrays contain N elements where N is related to the total or 
maximum number of time steps T by N = i ( T + l ) ( T + 2 ) .  Note that the origin is 
defined as t = O  and therefore N is written in terms of T +  1. The array G I  contains 
the occupation numbers for a single population evolution and hence contains only 
‘zeros’ (if a site is vacant) and ‘ones’ (if a site is occupied). Note that site 1 (the origin) 
is always occupied, and so G I  always has a one as its first element ( G I (  1)  = 1). The 
array GTOT contains the cumulative data for all such evolutions. The array GSQ, used 
for statistics purposes, contains cumulative data for the sum of squares of bins of data. 

To determine if site i (corresponding to (x, t ) )  is occupied, check its predecessors 
on row t - 1 for occupancy. Form the sum of the occupation numbers of the ancestors 
of (x, t )  which are contained in G I .  In the case of bond percolation on the square 
lattice, apply the following rules to this sum: 

( 1 )  If sum = 0 then cl( i )  = 0 with probability one. 
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( 2 )  If sum = 1 then c i ( i )  = 1 with probability p c .  To this end we compare a random 
number to pc .  If the random number is greater than pc ,  G I (  i )  = 0. If the random number 
is less than pc,  ci(i) = 1. 

(3) If sum = 2 then G I (  i )  = 1 with probability 2pc - p : .  Compare a random number 
to 2 p , - p f .  If the random number is greater than 2 p c - p f ,  G I (  i )  = 0. If the random 
number is less than 2 p c - p : ,  c i ( i ) =  1. 
These rules change only slightly for other types of percolation. For example in site 
percolation on the square lattice, if both ancestor sites are occupied (sum = 2 )  then 
ci ( i )  = 1 with probability p c  rather than 2pc -pf.  

Using these algorithms we generated data for five models in two dimensions ( D  = 1): 
square bond, triangular bond, square site, triangular site and square site-bond. In the 
site-bond model, the simple case where both sites and bonds are present with the same 
probability p was used, since p c  for this model is readily available (Kinzel and Yeomans 
1981). After preliminary runs to determine the point at which scaling sets in, at least 
two runs of each model were made in which the maximum time step was taken as 
T = 6 0 .  This value of T is much greater than that used by researchers using direct 
enumeration schemes (Blease 1977a, b, Essam and De’Bell 1981, 1983). In those works 
T G  15 and corrections to scaling are likely to be important. Kinzel and Yeomans 
(1981) use a transfer matrix approach on an infinitely long strip, but again the width 
of the strip is about 15 lattice spacings and so care must be taken in treating finite size 
effects. A direct comparison cannot be made with the work of Brower et al (1978) 
but they also rely upon an extrapolation to asymptotically large times. In this work 
we observe scaling only for t 3 2 0  and therefore corrections to scaling were not 
considered as an important source of error. Since we do not rely upon extrapolation 
to asymptotically large times the finite size effects resulting from the upper bound were 
neglected. 

At least one run of each model with ensemble size 10000 and one run each with 
ensemble size 50 000 was made. These programs, run on a VAX 11/780, had CPU times 
of approximately 1 hour and 10 hours respectively. The differences in ensemble size 
and the disparity in CPU time are due to the manner in which statistics were obtained 
which will be explained later in this paper. The results obtained for the ensemble 
averaged occupation numbers G(x, t), for the first few sites are in agreement with the 
predictions made by direct enumeration (to within the statistical error expected for 
uncorrelated Gaussian distributed events). The values of p c  used for each model were 
taken from data obtained by direct means and appear in table 1. 

The validity of these values of pc  was not tested in this work. The central values 
of pc  reported from direct means were taken as fixed. Since these programs do not 
depend on running to asymptotically large times the effects of errors in p c  in the 
calculation of the exponents should not be significant. That scaling is exhibited (which 
is discussed later in this paper) demonstrates that this is true. 

To obtain an estimate of the statistical errors incurred in our data, we consider 
each run to be uncorrelated with all other runs. This is strictly true in the limit where 
the random number generator is truly random, i.e. where the period of correlations is 
infinite. Since machine generated random numbers have some finite period (albeit 
large) our measurements must either be made well within this period or some other 
computational tricks must be used. The relatively small run size insures that the former 
is true. Then, if the occupation number at each site is independent of all other sites, 
the ensemble averaged occupation number (G(x, t ) )  is expected to be a Gaussian 
distribution about some average value. The square root of the sample variance (r2) 
of G(x, t )  at any site (x, t )  is a measure of the error in G(x, t )  at that site. To compute 
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the sample variance for a set of Gaussian distributed numbers, one needs to calculate 
a mean and a mean square value for those numbers. To obtain a mean square occupation 
number for a site, we 'bin' the data from individual runs of G I  into equal subsets of 
those contained in GTOT. That is, at each site i and for each equal subset or bin of 
the total number of runs in the ensemble, a sum of the occupation numbers from 
individual runs of G i ( i )  are kept. The mean value of G(x, t )  for that subset and also 
the mean value squared can then be obtained. The mean squared value is added to 
the total in GSQ( i) .  The average of these squared quantities over all bins in the ensemble 
gives a measure of the mean square value of G(x, t )  at each site i. Then the root mean 
square deviation, a measure of the error in our data for G at each site i, can be found 
from the square root of the difference of the mean square and the square of the mean. 

It is important to note that this type of error analysis is, for data collected at each 
site i, completely independent of any other site in the lattice, that is, uncorrelated. If 
G at each site were indeed uncorrelated with every other site, then for calculated 
quantities involving an integral or sum over G we can expect a standard deviation 
which goes inversely as the square root of the total number of values of G involved. 
However, the data obtained for G at time t is dependent upon the data obtained at 
time t - 1, since the existence of individuals at time t depends upon the existence of 
those at time t - 1 in some way. This introduces an uncertainty into the error analysis 
of the exponents which cannot be eliminated through some simple manipulation of 
the data. Grassberger and De La Torre (1979) also cite these correlation effects and 
use runs above and below p c  in their work as a consistency check. The errors obtained 
for the exponents from runs with ensemble size 10 000 were calculated in this manner. 
The errors that one obtains are unrealistically small. 

A more accurate measure of the error in calculated quantities can be obtained if 
they are measured separately for each bin of data. The data for 50000 runs was 
handled in this manner. Data was placed into bins of 1000 runs each and the exponents 
calculated for each bin. This provides 50 independent measurements of the exponents 
from which we can find the mean and the standard deviation (a ) ,  which is a measure 
of our statistical errors. 

The choice of 1000 runs per bin was made on the basis of keeping errors of the 
first type (including systematic error) 'small'. That is, the error in calculating an 
exponent (by least squares fit to a straight line) should be much smaller than the 
fluctuations of those exponents about their mean. The choice of 50 bins which in turn 
implies ensembles of 50000 was made to keep total CPU time minimal. Since the 
calculated mean is from some (random) sample population (size 50) of the parent 
population whose mean is the 'true' value which we seek, we would like a measure of 
the amount that these two differ. Such a measure is provided by the standard deviation 
( U )  of the sample distribution divided by the square root of the number of points in 
our sample distribution (50). It is this measure which we have quoted as the errors 
in our results (table 1). 

3. Tests of scaling and universality 

To find the onset of scaling we consider the moments of G(x, t )  at fixed t .  By definition, 
the nth moment of G is 

M ' " ' ( t )  = dx JxlnG(x, t ) .  i (3.1) 
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If the scaling form, (1.3) is correct, then these moments should behave as 

M("'(t) - AtP+("+l)q dz Iz("@(Bz) (3.2) 

1 
5 

where p = y /  vll - U,/ viI - 1 and q = VJ Y /. The integral over the scaling function CP is 
just a constant. Therefore if we plot M n ) ( t ) / t p + ( " + ' ) 4  against t the plots should like 
on a straight line and with zero slope in the scaling region. Such a plot with n = 0, 1,2 
for square bond percolation is shown in figure 2. 

+I  i 

0 20 LO 60 
f 

Figure 2. Plots of M"(I) / I~+("+')~ against f for square bond percolation. 

These plots show that scaling is obeyed for t 3 20. This lower bound on scaling is 
approximately the same for all models tested. This lower bound was used in subsequent 
calculations involving tmin. Note that these plots are sensitive to the values of the 
exponents used in the powers of p and q. That is, if the power p + ( n  + 1)q to which 
t is raised is in error by an amount 8(n) ,  then the plots of M " ( f ) / t p + ( " + ' ) q  against t 
will show power law behaviour; this error can occur due to errors in y, vII, vL or 
combinations of all three. Figure 3 shows the sensitivity of M " ( t ) / t P + q  for square 
bond percolation to fluctuations in the exponent vi/ over a range of *lo%. 

Another visual or graphical test of scaling which is related to the first test is a plot 
of the scaling function (@) against the scaling variable (2) for the same model but 
different values of time. Figure 4 shows such a plot for square bond percolation. Note 
that the nth moment of the scaling function at some fixed time equals the normalised 
nth moment of G ( M " ( t ) / t p " " " ' q )  at that time. Define x ( " )  as the nth moment of @ 

Figure 3. Plot of M n ( t ) / t p + q  against t for square bond percolation showing the variation 
of these moments with Y , , .  
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Figure 4. Plots of @ ( z )  against z for square bond percolation at different values of t 
(+, 40; X, 45; 0, 50; 0, 55; 0, 60). 

at fixed time; combining (1.3) and (3.1) we find for x(") 

(3.3) 

Hence an individual point in one of the plots of M'"'/ tP+("+' )q  against t is comprised 
of an integral over the corresponding moment of @. Therefore, we can expect that 
these plots of the scaling function are not as susceptible to errors in the exponents as 
are the normalised moments of G. These plots do show however, that the structure 
of the scaling function is indeed correct. 

We have tested universality in ZD directed percolation in several ways. The first 
and simplest means is a visual test. We plot the scaling function @ ( z )  against the 
scaling variable ( z )  for different models on the same graph and observe whether or 
not the curves lie on top of one another. Of course, the axes must be rescaled since 
universality asserts only that the functional form of the scaling function is universal, 
that is 

AI@l(BlZ) = @ * ( z )  (3.4) 

where the subscripts 1 and 2 can be any ZD directed percolation model. The values 
of A and B for each model are given in table 2. A plot of the five (rescaled) models 
which we tested is shown in figure 5 .  These functions are not strongly susceptible to 
errors in the exponents for the same reasons as stated in the tests of scaling. The 
agreement of all five models can be seen to be quite good, suggesting that universality 
is obeyed. 

Table 2. Values of the coefficients A and B for each model tested. 

Model A B 

Square bond 1 .oooo 1 .oooo 
Triangular bond 0.961 1 1.3987 
Service site 1.0292 0.8632 
Triangular site 1.1279 1.0904 
Square site-bond 0.9872 0.9227 



2660 J Benzoni 

P 
'I 

0 2 
-6 - 2  0 2 4 

z 

Figure 5. Plots of A @ ( r )  against z/ B for all models tested. 

A more quantitative test of universality consists of taking ratios of the moments of 
the scaling function (0). Using (lo),  the nth moment of 0 is given by 

x{")= Ai/B!"+') 1 lzl"@(z) dz. (3.5) 

Then, ratios such as 
* ( 1 ) 2 / * ( 0 )  * x ( 2 ) ,  c 9 x ( ~ ) 3 / x ( o ) *  * x ( 3 )  ~ 9 

can be formed for each model, and the constants C7 0, E, F, and G should be universal, 
although obviously not all independent. To test this hypothesis, we computed the 
moments of 0 using several different integration schemes. The results for the three 
best independent moment ratios using different integration schemes are shown in table 
3. Note that while the scaling function appears to be Gaussian, it must be exponential 
in the wings. Therefore, these ratios are also taken for a pure Gaussian and a decaying 
exponential (exp( - ]XI) )  for comparison. 

It can be shown that the ratios of these moments are far less susceptible to errors 
in the exponents than to statistical fluctuations in the data and errors incurred by the 
integration scheme itself. To average out statistical fluctuations, the moments x'") were 
- computed for each time from t = 20 to r = 60 and averaged over these times to obtain 
x'"). That is, the values of the normalised moments of G as shown in figure 2 are 
averaged from t = 20 to f = 60. 

Note that no weighted average over ,y(") at different times is taken, since the values 
at lower t have a smaller statistical fluctuation while those at higher t have less error 
due to corrections to scaling. The values of the exponents used in evaluating these 
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Table 3. Moment ratios C, D and G (as defined in text) for all models tested and for a 
Gaussian and decaying exponential as well. Integration by (a )  Simpson’s rule, ( b )  
trapezoidal rule, ( c )  square counting. 

( a )  Simpson’s Rule 

Constant 1 2 3 4 5 6 7 8 

C 0.657 0.666 0.662 0.645 0.656 0.657 0.637 0.500 
F 0.380 0.394 0.387 0.365 0.379 0.38 1 0.333 0.167 
G 0.814 0.820 0.818 0.809 0.814 0.8 I5 0.785 0.667 

( b )  Trapezoidal Rule 
~~ 

Constant 1 2 3 4 5 6 7 8 

C 0.661 0.668 0.665 0.652 0.660 0.661 0.637 0.500 
F 0.380 0.394 0.387 0.365 0.379 0.381 0.333 0.167 
G 0.8 I2 0.819 0.816 0.805 0.812 0.813 0.785 0.667 

( c )  Square Counting 
~~ 

Constant I 2 3 4 5 6 7 8 

C 0.661 0.668 0.665 0.652 0.660 0.661 0.637 0.500 
F 0.380 0.394 0.387 0.365 0.379 0.38 1 0.333 0.167 
G 0.812 0.819 0.816 0.805 0.8 I2 0.813 0.785 0.667 

(1) square bond, (2) square site, (3) square site-bond, (4) triangular bond, (5) triangular site, (6) average 
value of models 1-5, (7) Gaussian, (8) decaying exponential (exp(-1x1)). 
Gaussian moments ( M ‘ ” ’ )  C = 2/ 8, F = 4, G = ~ / 4 .  
Decaying exponential (exp( - 1 ~ 1 ) )  C = 4, F = A, G = 3. 

moments were those which made the plots of figure 2 most nearly equal to a constant 
(obtained by least squares fit), although error incurred from this source is negligible 
compared with error from the integration scheme itself. 

Since this data is not taken to asymptotically large times the moment ratios depend 
on the integration scheme. The integration schemes used were simple square counting, 
the trapezoidal rule and Simpson’s rule. The square counting scheme and the 
trapezoidal rule should, on average, yield the same result, since the scaling function 
is symmetric about z = 0 and the square counting scheme overestimates for z < 0 and 
underestimates (by an equal amount) for z>O. The greatest data fluctuations are 
incurred for the higher moments since differences exist between the even and odd time 
steps around z = 0. There are trade-offs involved with all methods used. Unless some 
form of interpolation or other numerical approximation scheme is used, Simpson’s 
rule can be used only on the even time steps, since it requires an odd number of data 
points. This extra numerical approximation will introduce a further source of error 
which, of course, is undesirable. Therefore in using Simpson’s rule one half of the 
data used in averaging the moments is lost, although the integration scheme itself is 
a fourth-order method which is to be contrasted with the trapezoidal rule which is a 
second-order method. A better means of comparing the two integration schemes is to 
eliminate one half the data when using the trapezoidal rule, even though no such 
restrictions exist in application of this method. Table 3 contrasts these different results. 
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The final test of universality is one concerning the experiments obtained from each 
model. Measures of ratios of the exponents y /  vtl - 1, y /  vll + U,/ vlI - 1, and y /  vll + 
2v,/ vlI - 1 can be obtained by plotting the log of the nth moment of G ( M " (  t ) )  against 
log time. Such plots for square bond percolation are shown in figure 6. By least 
squares fitting these data to straight lines, the ratios ( y /  vil) + n( U,/ vI1) - 1 are obtained 
from moment n. The results for n = 0 for all models and those obtained by other 
authors are shown in table 1. The errors quoted in our data result from binning the 
data into 50 bins of 1000 runs each. This error analysis has been discussed earlier in 
this paper. A plot of the exponent ratio ( y /  vli) - 1 and the respective error bars for 
several models appear in figure 7. 

0 3 6 -  

0 34-  

rl 
0 3 2 -  

0.30- - 

0 2  4 6 8 10 
Model number 

Figure 7. Plots of T J (  TJ = y /  U,, - I )  for several models 
showing error bars. These models correspond to: ( I )  
Blease (1977b) square bond, (2 )  Blease (1977b) 
triangular bond, (3) Brower ef a/ (1978) RQS, (4) 
Grassberger and De La Torre (1979) RFT, (5) De'Bell 
and Essam (1983) square bond, (6) square bond, (7) 
triangular bond, (8) square site, (9) triangular site, 
(10) square site-bond. 

4. Conclusions 

0 2 4 6 
Model number 

Figure 8. Plots of ( y /  ull) +( v,/ U , )  - 1 for several 
models showing error bars. These models corres- 
pond to: ( I )  Brower et a/ (1978) RQS, (2) De'Bell 
and Essam (1983) square bond, (3) square bond, (4) 
triangular bond, (5) square site, (6) triangular site, 
(7) square site-bond. 

We have generated Monte Carlo data for directed percolation on five types of 2~ 

lattices. From this data we have tested scaling by plotting @ and its nth moment at 
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several different times. These results are shown in figures 4 and 2 respectively. This 
data readily demonstrates that scaling is obeyed for t 3 20. 

By comparing ratios of the moments of @ we have also tested universality in this 
work. The results are given in table 3. Although these ratios differ from model to 
model by about 5%, we still believe that this is a good indication that universality is 
correct. 

Finally, we have tested the universality of the exponent ratios ( y /  q )  + n (  YJ vli) - 1 
for n = 0, 1,2 by plotting the log of the nth moment of G against log time as in figure 
6. The resulting exponent ratios obtained are shown in figure 7 and are also given in 
table I for n = 0. For the five models tested we find that 

( y /  V I , )  - 1 = 0.305 f 0.007 (4.1) 

where the uncertainty represents a measure of the fact that the exponent values for 
the two site models lie outside each others respective error bars. If we can assume 
that for some reason the systematic errors incurred in the site model are much larger 
than in the other models, then we certainly get consistency and find that 

( y /  ~ 1 1 )  - 1 = 0.304 f 0.004. (4.2) 

This result is consistent with the quoted error bars of other workers (see figure 7) but 
is inconsistent with the results of Brower et a1 (1978). One possible reason is that 
corrections to scaling may be more important in their work since they do not work at 
asymptotically large times. 

Similarly from the first and second moments we find 

( y /   VI^) + ( vi/ 

( y /  V I I )  +2( vi/ V I , )  - 1 = 1.562 f 0.016 

- 1 = 0.933 f 0.010 (4.3) 

(4.4) 

and 

respectively. Subtracting the result of the zeroth moment from that of the first moment 
we find 

( YJ ~ 1 1 )  = 0.629 * 0.010. (4.5) 

This result is compared with other workers in figure 9. 
As stated in the introduction, lines of constant G provide the shape of a typical 

cluster. As shown in figure 10 these clusters do not appear to close on the origin for 
small G. For sites on the light cone (1x1 = t ) ,  G is given analytically by 

(4.6) 

where l =  l/llnpcl. Therefore the boundaries of the cluster on the light cone can be 
found for a given G. This typical cluster shape compares with that given by Kertesz 
and Vicsek (1980). 

Since it is difficult to attribute the systematic errors in this work to one particular 
source, more conclusive results might be obtained from Monte Carlo studies such as 
this one if several effects are taken into account. For example, by increasing the 
maximum number of time steps ( T )  used in the lattice simulation the errors incurred 
due to corrections to scaling would be further reduced, and statistical fluctuations may 
- be further reduced, since this would provide more data over which the average moments 
x'"' could be taken. Secondly, for a given t, the number of values of x and therefore 
z is given by t + 1. Therefore in evaluating the moments of @, greater t implies a 

G = exp( - t /  I )  
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Figure 9. Plots of ( v , /  U,,) for several models showing error bars. The models correspond 
to: ( I )  Brower et a1 (1978) RQS, (2) Grassberger and De La Torre (1979) RFT, (3) De’Bell 
and Essam (1981) square bond, (4) Kinzel and Yeomans (1981) square site, ( 5 )  Kinzel 
and Yeomans (1981) square bond, (6) Kinzel and Yeomans (1981) square site-bond, (7) 
De’Bell and Essam (1983) square bond, (8) De’Bell and Essam (1983) square site, (9) 
De’Bell and Essam (1983) triangular bond, ( I O )  De’Bell and Essam (1983) triangular site, 
( 1  1) square bond, (12) triangular bond, (13) square site, (14) triangular site, (15 )  square 
site-bond. 
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Figure 10. Lines of constant G. Note that the scale has been expanded in the x direction 
to show the shape of the clusters better. 

greater number of data points involved in the integration, and therefore (in principle) 
a greater accuracy. 

Another source of systematic error which might be present in our data is the choice 
of the lower bound for least squares fitting. However, by increasing the lower bound 
over which the least squares fit is performed and thereby decreasing possible systematic 
correction to scaling errors, one induces more error in the slope of the fitted line. 

The one outstanding difficulty with this increase in data is that a significant increase 
in the amount of CPU time would be required for larger lattice and ensemble sizes. 
Larger lattice size (T) requires more calculations to be performed (the number of 
calculations goes roughly as the number of time steps (T) squared), and a larger 
ensemble size ( N )  would be required to ensure that the data obtained at these large 
times has an acceptably small fractional error (the number of runs in the ensemble 
required to produce a single event along lines of constant 0 goes down as a power 
law with increasing time). 
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It must be noted that the programs used to generate this data were the simplest 
ones possible. By improving the algorithm used significant decreases in the amount 
of CPU time could be made. Such improvements are possible in storage of the data 
which gets passed in different subroutines. Also, importance sampling can be used to 
further decrease statistical errors and thus decrease the amount of CPU time. 
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